Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Curr Alzheimer Res ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38468529

Discoveries in the field of medical sciences are blooming rapidly at the cost of voluminous efforts. Presently, multidisciplinary research activities have been especially contributing to catering cutting-edge solutions to critical problems in the domain of medical sciences. The modern age computing resources have proved to be a boon in this context. Effortless solutions have become a reality, and thus, the real beneficiary patients are able to enjoy improved lives. One of the most emerging problems in this context is Alzheimer's disease, an incurable neurological disorder. For this, early diagnosis is made possible with benchmark computing tools and schemes. These benchmark schemes are the results of novel research contributions being made intermittently in the timeline. In this review, an attempt is made to explore all such contributions in the past few decades. A systematic review is made by categorizing these contributions into three folds, namely, First, Second, and Third Generations. However, priority is given to the latest ones as a handful of literature reviews are already available for the classical ones. Key contributions are discussed vividly. The objectives set for this review are to bring forth the latest discoveries in computing methodologies, especially those dedicated to the diagnosis of Alzheimer's disease. A detailed timeline of the contributions is also made available. Performance plots for certain key contributions are also presented for better graphical understanding.

2.
Sensors (Basel) ; 21(23)2021 Dec 06.
Article En | MEDLINE | ID: mdl-34884146

One of the major health concerns for human society is skin cancer. When the pigments producing skin color turn carcinogenic, this disease gets contracted. A skin cancer diagnosis is a challenging process for dermatologists as many skin cancer pigments may appear similar in appearance. Hence, early detection of lesions (which form the base of skin cancer) is definitely critical and useful to completely cure the patients suffering from skin cancer. Significant progress has been made in developing automated tools for the diagnosis of skin cancer to assist dermatologists. The worldwide acceptance of artificial intelligence-supported tools has permitted usage of the enormous collection of images of lesions and benevolent sores approved by histopathology. This paper performs a comparative analysis of six different transfer learning nets for multi-class skin cancer classification by taking the HAM10000 dataset. We used replication of images of classes with low frequencies to counter the imbalance in the dataset. The transfer learning nets that were used in the analysis were VGG19, InceptionV3, InceptionResNetV2, ResNet50, Xception, and MobileNet. Results demonstrate that replication is suitable for this task, achieving high classification accuracies and F-measures with lower false negatives. It is inferred that Xception Net outperforms the rest of the transfer learning nets used for the study, with an accuracy of 90.48. It also has the highest recall, precision, and F-Measure values.


Deep Learning , Skin Neoplasms , Artificial Intelligence , Early Detection of Cancer , Humans , Skin , Skin Neoplasms/diagnosis
3.
Front Public Health ; 9: 751536, 2021.
Article En | MEDLINE | ID: mdl-34708019

Alzheimer's Disease (AD) is a neurodegenerative irreversible brain disorder that gradually wipes out the memory, thinking skills and eventually the ability to carry out day-to-day tasks. The amount of AD patients is rapidly increasing due to several lifestyle changes that affect biological functions. Detection of AD at its early stages helps in the treatment of patients. In this paper, a predictive and preventive model that uses biomarkers such as the amyloid-beta protein is proposed to detect, predict, and prevent AD onset. A Convolution Neural Network (CNN) based model is developed to predict AD at its early stages. The results obtained proved that the proposed model outperforms the traditional Machine Learning (ML) algorithms such as Logistic Regression, Support Vector Machine, Decision Tree Classifier, and K Nearest Neighbor algorithms.


Alzheimer Disease , Algorithms , Alzheimer Disease/diagnosis , Humans , Magnetic Resonance Imaging , Neural Networks, Computer , Support Vector Machine
...